

Database Entity Persistence with Hibernate

for the Network Connectivity

Analysis Model

by Andrej Bevec

ARL-TR-6893 April 2014

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless

so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the

use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5068

ARL-TR-6893 Apri 2014

Database Entity Persistence with Hibernate

for the Network Connectivity

Analysis Model

Andrej Bevec

Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

April 2014

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

27 January 2009–22 June 2013
4. TITLE AND SUBTITLE

Database Entity Persistence with Hibernate for the Network Connectivity Analysis

Model

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Andrej Bevec

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-SLB-G

Aberdeen Proving Ground, MD 21005-5068

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-6893

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report addresses the design and architecture of data persistence for the Network Connectivity Analysis Model application

developed in the Java language and using the Hibernate Application Programming Interface as the object-relational mapping

library. The report also addresses the database architecture, the Class/Entity domain model design, and the Java design patterns

incorporated, such as the Factory and Data Access Object design patterns for the Hibernate implementation.

15. SUBJECT TERMS

hibernate, persistence, entity persistence, entity, NCAM, network connectivity analysis model, database architecture

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

94

19a. NAME OF RESPONSIBLE PERSON

Andrej Bevec
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-395-0291

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures v

Preface vi

1. Background 1

2. Database Architecture 2

3. NCAM Class/Entity Model 3

3.1 Cardinality of the NCAM Entity Model..4

4. Data Access Object – Design Pattern 8

4.1 GenericDAO ..8

4.2 Child DAO Interfaces ..9

5. HibernateDAO 10

6. Hibernate Criteria API 11

7. Concrete HibernateDAO classes 12

7.1 DAO Hibernate Design in NCAM ..12

8. Factory Design Pattern Incorporation 13

9. An NCAM Entity Persistence – Java Coding Example 16

9.1 Hibernate Annotations ...16

9.2 Example of a Save Or Update Database Operation for the AntennaModel.java

Entity ..17

10. NCAM Increased Database Read Speed Implementation for Antenna Patterns 18

11. NCAM Database Speed Enhancements for Bulk Deletes of Database Records 19

12. Conclusion 20

 iv

13. References 21

Appendix A. Scenario Database Schema and Data Dictionary 23

Appendix B. Setting Up the Database Development Environment 77

Bibliography 85

Distribution List 86

 v

List of Figures

Figure 1. NCAM database architecture. ..3

Figure 2. NCAM class/entity model. ...5

Figure 3. NCAM class/entity model for associations for “simulator.event.”6

Figure 4. NCAM class/domain model associations for “PlatformModel.”7

Figure 5. Result entity associations for “RunControlModel.” ...7

Figure 6. DAO design for hibernate CRUD interactions with databases.13

Figure 7. Factory pattern for DAOs, where S/F = static and final and A = abstract.15

Figure A-1. NCAM Class/Entity model. ...25

 vi

Preface

A main objective of any software development application is the ability to save data that may be

generated by the run-time environment and saved into a database or multiple databases as the

program generates data and needs to perform create, read, update, and delete database

operations.

Presented in this report is the design of data persistence, or saving of data generated by the

application, of the Network Connectivity Analysis Model application developed in the Java

language and using the Hibernate Application Programming Interface as the object-relational

mapping library. The report addresses the database architecture, the Class/Entity domain model

design, and the Java design patterns incorporated, such as the Factory and Data Access Object

design patterns for the Hibernate implementation.

1

1. Background

The Network Connectivity Analysis Model (NCAM) software models the physical layer of the

Open Systems Interconnection model of wireless communication for the U.S. Army’s platforms

by addressing the wireless link qualities between stationary or moving platforms. The platforms

may be traversing benign or hostile electronic warfare environments.

The NCAM software is divided into two main Java projects, NCAM and NCAMLib. The

NCAM project includes the classes associated with the graphical user interface while the

NCAMLib project is used as a library by NCAM. NCAMLib is where all of the modeling and

simulation takes place. This separation provides for the model-view-controller type of software

architecture.

The NCAM design is broken up into object-oriented (OO) modules programmed in the Java

language. The modules, i.e., Deployment, Propagation, Antenna, Noise, Link Budget, and

Connectivity, comprise the NCAM software. Each specific module tackles a specific physics or a

physical phenomenon problem to determine the overall link quality among the platforms

specified for a NCAM run.

Java, Netbeans, Hibernate, and the MySQL database management system are the pieces of the

software development environment that are used to develop the data persistence architecture for

NCAM/NCAMLib.

Hibernate is a high-performance object/relational persistence and query service that takes care of

the mapping from Java classes to database tables and from Java data types to structured query

language (SQL) data types. It provides data query and retrieval facilities that significantly reduce

development time. Hibernate’s design goal is to relieve the developer from the majority of

common data persistence-related programming tasks by eliminating the need for manual,

handcrafted data processing using the SQL and Java Database Connectivity (JDBC). However,

unlike many other persistence solutions, Hibernate does not hide the power of SQL from the user

and guarantees that that investment in relational technology and knowledge is as valid as always.

Working with both OO software and relational databases can be cumbersome and time

consuming. Development costs are significantly higher due to a paradigm mismatch between

how data is represented in objects versus relational databases. Hibernate can significantly reduce

development time, and as a provider of object/relational persistence solution it will significantly

reduce lines of code, provide a buffer between the two data representations, and enable a more

elegant use of OO on the Java side—all while keeping the relational schema normalized and

guaranteeing data integrity. Many software developers and architects estimate that up to 30% of

their code is needed to deal with this infrastructure concern. Hibernate directly

2

addresses this challenge by providing the ability to map an object model’s data representation to

a relational data model and its corresponding database schema (Hibernate, 2013).

Hibernate generates the SQL calls through the JDBC application programming interface (API)

and relieves the Java software programmer from using result-set handling and object casting,

which is the norm for non-Hibernate implementations. Hibernate keeps the application portable

to all supported SQL relational database management systems. From our experience in profiling

the run time of NCAM in Netbeans, there was little overhead for Hibernate for reads and writes

to the database but significant overhead for bulk deletes. This was fixed by providing SQL query

injection with Hibernate for bulk deletes.

Hibernate provides transparent persistence for entities with the only major requirement that the

Java class has a zero argument constructor. Hibernate provides a checking feature that avoids

unnecessary database write actions by performing SQL updates only on the modified fields of

persistent entities.

In transforming Entity objects, or entities, into corresponding table entries in a database,

Hibernate requires metadata that transforms data from one representation to the other using

extensible markup language (XML) files or annotations in the Java source class annotated as

Entity. Annotations are identified by the “@” symbol in the source code; e.g., a class to be

persisted would be annotated with “@Entity” at the top of the class. These mapping files or

annotations provide the information required by Hibernate to properly map a class to a database

table, as well as how to handle the SQL queries to persist the entities. In this project, Hibernate

annotations were used instead of XML transform files. This is a cleaner, more compact, and less

time-consuming programming approach.

2. Database Architecture

NCAM is a database-intense application because of the amount of data it generates during the

run time. It interacts with three databases: (1) the “scenario,” which is a read/write database for

the end user’s scenario data and the output generated during the run time, (2) the read-only

“blueSystems” database, which holds information on friendly force platforms and common

scenario information such as antenna patterns, and (3) the read-only “redSystems” database,

which holds information on enemy platforms. The NCAM database architecture, shown in

figure 1, shows how NCAM interacts via the Hibernate layer and JDBC to interact with the three

databases.

3

Figure 1. NCAM database architecture.

The Hibernate API provides a static method, “Hibernate.recreateDatabase,” for recreating the

database schema when the entity domain model changes. A simple program was written to take

advantage of this capability (Project NCAMLib persist.CreateDBSchema.java). This program is

part of the NCAM source code to recreate the database schema when the NCAM domain entities

were revised. The database schema for each of the three databases is created via Hibernate using

the Entity domain model described in section 9 of this report. This saves a significant amount of

time in the software development effort because the domain Entity class structure is mapped to

the relational database schema by Hibernate. The data dictionary for the “scenario” database

showing the mapping of the NCAM entity domain model to the database tables is shown in

appendix B.

3. NCAM Class/Entity Model

An instantiated class is an object. An object that is annotated as an Entity that implements the

Java Serializable interface has a zero argument constructor, conforms to public getters and setters

for its private attributes, and is persisted as an Entity object. In this report, an Entity refers to the

class annotated as an Entity or may be thought of as an Entity set. An Entity object refers to the

instantiated class itself. All Entity diagrams in this report thus will show Entity relationship sets

or class relationships among each other.

A Java class that is annotated as an Entity identifies to Hibernate that the instantiated class, i.e.,

object, may be persisted to a relational database. The Entity model, as it pertains to NCAM, may

be thought of as a subset of all the classes that, when instantiated, may be persisted to a database.

Persisting an object means saving that object to a database for future use by a program using the

Hibernate Object-Relational Mapping (ORM) framework. When instantiated, a Java class

annotated as an Entity may be persisted via Hibernate into the database for future Create, Read,

Update, or Delete (CRUD) operations.

4

How these classes and entities in NCAM relate to one another is shown in a conceptual

class/entity domain design, shown in figure 2, which also shows classes that are only part of the

NCAM class domain model, i.e., classes that do not need to be persisted but are included here for

a more complete understanding of the Entity relationships with the NCAM domain class

structure. NCAM-only classes are highlighted in gray; Entity-annotated classes are shown in

white. To keep the figures simple, attributes and relationships for the entities and classes are

omitted. The cardinality of the entities is shown with an asterisk (*) representing a “many”

relationship and the numeral 1 representing a relationship of one.

When persisted, Entity objects are Java objects that are saved into a database as records that may

be retrieved later and used as necessary. An Entity object is a row in a database table. The table

itself is the mapped Entity set, which corresponds to the class annotated as an Entity.

Mapping Java classes to database tables is accomplished via the configuration of an XML file or

by using Java Annotations. In this project, annotations were used throughout the project except

for configuring the initial Hibernate startup files, i.e., hibernate.cfg.xml.

3.1 Cardinality of the NCAM Entity Model

Cardinality refers to the number of instances of an entity, and deals with relationships between

entities (figures 2–5). Relationships between entities may be one-to-one, one-to-many, many-to-

one, and many-to-many, identified as 1:1, 1:*, *:1, or *.* in the figures. The most common, for

example, a one-to-many relationship, is shown between the AntennaModel and AntennaPattern

classes. An instance of AntennaModel is an antenna that may have more than one antenna

pattern associated with it, e.g., if an antenna is driven at a different frequency or is located

vertically or horizontally on a platform, the antenna will produce different antenna patterns for

one unique physical antenna. Thus, a one-to-many (1:*) cardinality exists between

AntennaModel and the AntennaPattern entities (figures 2–5).

5

Figure 2. NCAM class/entity model.

NCAM Class/Entity Domain Model with
the Hibernate API ·fi\V ~

c (..... .., ·j
I J 'L

.
HIJemao:e API Layer JOBC . ~ f' . (o -i\j Po AJI NCAM Ettm~s HiOOm~te ORM lnlerr&ee

' Re~d only

L:l 1
ReadCnly

NolseModel !.-:.
se-e next ligu(e 1

for Results

~
EnlitiEIS

1\
~ • 1 1

I;/ ~ J/ 1. ! 1 1 .. : 1 : 11
Platform Us I AnlennaLISI

. I RunControiModel ~ •• , , • , •• , •• , •• , • :

p Seene><t A 1. 0.
figure for . 1

1
~:, 71\ ' 1 Events .. . vi· · · · · · · · · ·

1 RoadioModel Antenn<JModel -1 ,........,
~ F- 1 I • c 1' 1 .. 1

\1,

I ; ! I 1 ':'
Tk"emModet

' . ,:, I
· ~

1 1. Anlenn;aPatltm

1 \), ,.i· ... 1/ . .
I 1::, PlatformModtl k. .: .

\"I- -1

~ WaypolntUst 1 1
F

1~1
I

11' SeP. neld
1 I

figure for I additioool I Pl&1tormModet
associations l \ I/ ~ I waypolntModel [., DeploymentResutts k- :

I
EventModel r I

~ ------

I Arltenn;aPOitternSc:Cilna,io 1

Legend: -
1

NCAMCiass <· · ··> Association NCAM
Only Class Only

--:; Entity Association Only

B 1

1 1

< -7
Both Class & Entity - Associations

6

Figure 3. NCAM class/entity model for associations for “simulator.event.”

7

Figure 4. NCAM class/domain model associations for “PlatformModel.”

Figure 5. Result entity associations for “RunControlModel.”

8

4. Data Access Object – Design Pattern

The data acess object (DAO) is an important design pattern because it provides an abstract

interface that hides the underlying database implementation and the Hibernate framework.

Hibernate is a very powerful and elegant way to implement database interactions, but Java

programmers wish to deal with classes and objects and not worry about understanding SQL

database syntax or performing CRUD operations to understand SQL. The DAO is a Java design

pattern implemented in NCAM that hides the implementation of the Hibernate persistence

framework from the Java programmer, making it easier to implement future changes to the

database layer. In the DAO design pattern, the NCAM application is provided with Java

interfaces for accessing data; the actual implementation of those interfaces are performed by

classes that may be replaced if the need arises. Providing Java programmers DAOs instead of

coding directly to the Hibernate API simplifies application development, insulates changes that

may occur in the database from other layers in the application, and eases interaction with the

databaseand overall code maintainability.

One of the goals in designing software is to factor out common or reusable methods. Thus, a

Hibernate implementation of the DAO pattern factors out CRUD methods into reusable, abstract,

and inheritable parent classes.

4.1 GenericDAO

For NCAM, a GenericDAO—Java 5 Generics Interface—is created that hides both the

underlying database implementation and the mechanism or the framework being used to persist

data to the database (McKenzie, 2008, p. 388). GenericDAO defines the most important methods

and functionality that our application needs, namely the CRUD from our persistence layer. The

GenericDAO provides the abstraction necessary if the underlying database implementation is

changed and for easier Java coding by hiding the underlying complexity of the Hibernate

persistence implementation. The most general interface in NCAM is the GenericDAO found in

the persist package of the NCAM project (Markowski et al., 2012), as follows:

interface GenericDAO<T, ID extends Serializable> {

 T finDecibelsyPrimaryKey(ID id);

List<T> finDecibelsyExample(T exampleInstance, String[] excludeProperty);

List<T> findAll(int startIndex, int fetchSize);
List<T> findAll();
List<T> findAll();
List<T> finDecibelsyExample(T exampleInstance);
List<T> findKidsOfParent(T exampleInstance, String parent, Long parentPrimaryKey);
List<T> findKidsOfParentMaxResultsOne(T exampleInstance, String parent, Long parentPrimaryKey);

9

List<T> findKidsOfParentByTime(T exampleInstance, String parent, Long parentPrimaryKey, double time);
T saveOrUpdate(T entity);
T merge(T entity);
void delete(T entity); void beginTransaction(); void commitTransaction();

.

etc.,

. }

These abstract methods defined in the interface are implemented in a Hibernate DAO abstract

class, i.e., HibernateDAO. The interface signature provides for querying of the database for

objects of generic type T, with a parameter ID, where parameter id is the primary key of the

object and a returned object of type T from the database. The parameter <T> represents the class

type the DAO manages, and parameter <ID> is the ID type of a serializable object. With Java

Generics, no type casting is required for the returned object.

The abstract GenericDAO methods are identified by the following categories:

• Finder Methods

o T finDecibelsyPrimaryKey(ID id)

o List <T> findAll(int startIndex, int fetchSize)

o List<T> finDecibelsyExample(T exampleInstance, String[] excludeProperty)

• Persistence Method

o T saveOrUpdate(T entity);

• Delete Method

o void delete(T entity);

• Transactional Methods

o void beginTransaction();

o void commitTransaction();

4.2 Child DAO Interfaces

For subclassed DAO interfaces, namely interfaces for the entities that we wish to persist, one

does not need to define many new methods since the ones inherited will be included from the

parent, i.e., GenericDAO. If new business logic is required for a specific DAO, that logic needs

to be included in that child interface and not the GenericDAO. As a general design rule, one

creates a DAO for each class defined in the problem domain, which is an Entity that needs to be

10

persisted. These DAOs are the only ones that will be needed by the Java programmer because the

Hibernate implementation of the entity-specific DAOs will not be seen by the Java programmers.

Therefore, it is possible to replace the Hibernate implementation with any other future

technology or ORM framework if the need arises. The child DAOs concretely define the generic

T type and generic Serialable ID type, which is part of the GenericDAO interface, as shown in

the following with the AntennaModelDAO:

public interface AntennaModelDAO extends GenericDAO<AntennaModel, Long>{

}

As can be seen, the T type is defined as AntennaModel and the ID type as Long.

5. HibernateDAO

The concrete implementation of the GenericDAO occurs in the HibernateDAO abstract class.

With comments removed, the abstract class that follows (Markowski et al., 2012) shows some of

the implementation. For the complete implementation, refer to the source code in the NCAMLib

project under the “dao” package:

public abstract class HibernateDAO<T, ID extends Serializable> implements

 GenericDAO<T, ID> {

 private Class<T> persistentClass;

 public HibernateDAO(Class c) {

 persistentClass = c;

 }

 public T findByPrimaryKey (ID id) {

 return (T) HibernateUtil.getSession().load(persistentClass, id);

 }

 public List<T> findByExample (T exampleInstance, String[] excludeProperty) {

 Criteria crit = HibernateUtil.getSession().createCriteria(persistentClass);

 Example example = Example.create(exampleInstance);

 if (excludeProperty != null) {

 for (int i = 0; i < excludeProperty.length; i++) {

 example.excludeProperty(excludeProperty[i]);

 }

 }

 crit.add(example);

 return crit.list();

11

 }

 public List<T> findByExample (T exampleInstance) {

 Criteria crit = HibernateUtil.getSession().createCriteria(persistentClass);

 Example example = Example.create(exampleInstance);

 crit.add(example);

 return crit.list();

 public List<T> findKidsOfParent(T exampleInstance, String parent, Long pk) {

 List results =

HibernateUtil.getSession().createCriteria(persistentClass).createCriteria(parent).add(Restrictio

ns.eq("primaryKey", pk)).list();

 return results;

 }

 public List<T> findKidsOfParentMaxResultsOne(T exampleInstance, String parent, Long pk) {

 //need to chain criteria objects to get proper results as below

 Criteria criteria =

HibernateUtil.getSession().createCriteria(persistentClass).createCriteria(parent).setMaxResults

(1).add(Restrictions.eq("primaryKey", pk));

 return criteria.list();

 }

.. etc

}

6. Hibernate Criteria API

Hibernate provides for various methods for querying Hibernate-persisted databases. It allows one

to express queries using standard SQL, Hibernate Query Language (HQL), the Criteria API, or a

combination of all. HQL is an OO version of SQL but much less verbose. If the Java/Hibernate

database designer wants no SQL syntax introduced into the Java code, Hibernate provides the

Criteria API. The Criteria API provides for Query by Criteria (QBC) and Query By Example

(QBE) OO queries. In NCAM, the QBC and QBE APIs are used extensively, as they are with

HQL where database speed is necessary. These APIs provide an elegant OO solution to querying

the database on the fly. An example of the Criteria API being leveraged is shown in the

HibernateDAO abstract class, findbyExample {} method.

12

7. Concrete HibernateDAO classes

With the abstract HibernateDAO class providing most of the implementations for the

GenericDAO and creating the corresponding concrete subclasses for the entities, persistence is

accomplished by extending the HibernateDAO abstract class, implementing the corresponding

DAO interface, and providing concrete class names for the generic types defined by the

GenericDAO interface.

The example of the HibernateAntennaModelDAO follows (Markowski et al., 2012):

public class HibernateAntennaModelDAO extends HibernateDAO<AntennaModel, Long>

implements AntennaModelDAO {

 public HibernateAntennaModelDAO() {

 super(AntennaModel.class);

 }

}

The concrete HibernateAntennaModelDAO class extends the HibernateDAO java abstract class

passing in the AntennaModel and Long objects via the Generics description. It calls its parent

class constructor via the super keyword.

7.1 DAO Hibernate Design in NCAM

A class and interface DAO diagram for the NCAM DAO design implementation is shown in

figure 6. Note that (1) the GenericDAO interface is implemented by the HibernateDAO abstract

class, (2) the individual DAO interfaces extend the GenericDAO, and (3), in turn, the concrete

Hibernate classes implement each corresponding interface and extend the Hibernate DAO. With

this design pattern in place, a very abstract interface is provided that hides both the underlying

database implementation and the framework, also providing OO Java coding using DAOs.

Factory, another design pattern incorporated into NCAM and presented in section 8, will

completely hide the Hibernate layer from the Java programmer.

13

Figure 6. DAO design for hibernate CRUD interactions with databases.

8. Factory Design Pattern Incorporation

A Factory pattern helps to model an interface for creating an object that at creation time can let

its subclasses decide which class to instantiate. For example, if a Java programmer wanted to

instantiate the AntennaModelDAO to do some database CRUD operations, one would have to do

something like AntennaModelDAO antennaModelDAO = new HibernateAntennaModel().

Obviously, that code snippet does not hide the back-end implementation of Hibernate if the word

“Hibernate” can be seen and appearing throughout the code. To make sure the Java programmer

never sees any of the concrete Hibernate classes, a Factory design pattern is used. Any good

DAO design pattern implements the Factory design pattern (Gamma et al., 1994).

By implementing the Factory design pattern, the Java programmer will be given an abstract class

called DAOFactory, which contains abstract methods for accessing each of the DAO classes of

interest, e.g., PlatformModelDAO, RunControlModelDAO, and AntennaModelDAO.

The abstract DAOFactory class will have a single static invocable method that will return an

instantiated instance of the DAOFactory (McKenzie et al., 2008, p 399). The concrete class that

implements the DAOFactory is HibernateDAOFactory, which is referenced inside the

14

DAOFactory via the constant variable, FACTORY_CLASS. A partial listing of this abstract

class without code comments follows (Markowski et al., 2012):

public abstract class DAOFactory {

public static final Class FACTORY_CLASS = HibernateDAOFactory.class;

 public static DAOFactory getFactory() {

 try {

 return (DAOFactory) FACTORY_CLASS.newInstance();

 } catch (Exception e) {

 throw new RuntimeException("Could not create Factory");

 }

 public abstract EventListDAO getEventListDAO();

 public abstract EventModelDAO getEventModelDAO();

public abstract AntennaModelDAO getAntennaModelDAO();

… etc

 }

DAOFactory is the class the Java programmers use to gain access to DAO objects to persist their

Java entities to the database. For example, to gain access to the AntennaModelDAO,

DAOFactory factory = DAOFactory.getFactory();

AntennaModelDAO antennaModelDAO = factory.getAntennaModelDAO;

Thus, there are no references that the underlying persistence layer is implemented via Hibernate.

What is gained here is that the underlying implementation may be changed from Hibernate to

JDBC or Java Data Objects (JDOs) API as long as the same DAO interfaces, such as

AntennaModelDAO, PlatformModelDAO, etc., are implemented. So we gain complete

flexibility on the data side as to how the persistence layer is managed and complete persistence-

layer independence on the client side of the application. The DAO pattern with the Factory

pattern demonstrates the separation of concerns for the NCAM software application.

A very important aspect of the design is how the static getFactory() method of the DAOFactory

is implemented. The getFactory method returns an instance of a class that implements the

abstract methods defined in the DAOFactory class. The class type is coded as a static final class

variable in the DAOFactory, instantiated and returned from the getFactory method. Thus, the

implementation of DAOFactory as HibernateDAOFactory is all hidden from the Java

programmer and may be changed in the future if the need arises to something like

JDODAOFactory or JDBCDAOFactory class, etc.

15

The concrete class that implements the DAOFactory is named HibernateDAOFactory, shown in

the following with a partial listing:

public class HibernateDAOFactory extends DAOFactory {

public EventListDAO getEventListDAO() {

 return new HibernateEventListDAO();

 }

 public EventModelDAO getEventModelDAO() {

 return new HibernateEventModelDAO();

 }

..

 public AntennaModelDAO getAntennaModelDAO() {

 return new HibernateAntennaModelDAO();

 }

..

}

The Factory design pattern implementation for DAO is shown in figure 7, which shows how

DAOs are accessed through the DAOFactory.

Figure 7. Factory pattern for DAOs, where S/F = static and final and A = abstract.

16

9. An NCAM Entity Persistence – Java Coding Example

This section presents a Java coding example of persisting AntennaModel Entity objects and a

discussion of the concepts involved.

9.1 Hibernate Annotations

This is not a primer on Hibernate, so the reader may need to consult the respective

documentation. Older versions of Hibernate use the XML mapping files for Hibernate to

transform everything properly into relational SQL database structures. Hibernate Annotations

may be used instead of XML mapping files. In the NCAM project, the Netbeans-integrated

development environment with the Hibernate Java persistence API plug-in includes the

necessary Annotations package.

For Hibernate Annotations, one needs to annotate the getter methods of all attributes that need to

be persisted. By default, all primitive data types are persisted and references need to be annotated

with their cardinality with their associating classes. If one wishes to override the default behavior

for database field names, primitive attribute names may be overridden for their corresponding

database field column names. References that are not persisted are annotated as “@Transient” on

the getter method. The reader may need to read the Hibernate Annotations documentation to

comprehend all the intricacies of annotations.

Looking at the pertinent portions of the AntennaModel class (Markowski et al., 2012) with the

code in italics and two forward slashes precede the code discussion comments, the class is

annotated as follows. The code shows some basic annotations of a class that needs to be

persisted.

The class is annotated as an Entity to identify to Hibernate that these objects may need to be

persisted to a relational database.

@Entity

public class AntennaModel implements NCAMModel, Serializable {

boolean tracking;

..

//Each Entity class needs a primaryKey attribute declared Long, so that a relational database may

identify each record as unique via the primary key. Each row in a database represents one entity

object or one record, in database terms.

Long primaryKey;

//Reference “rm” to be annotated to identify to Hibernate the multiplicity between

AntennaModel and RadioModel as many: one

17

 RadioModel rm;

//Annotated to identify to Hibernate that the attribute “primaryKey” is the designated database

primary key for each persisted object or record in the database table. @GeneratedValue

identifies to Hibernate to track the database primaryKeys by properly incrementing, deleting it,

and keeping the primary keys unique as required in relational databases.

@Id

 @GeneratedValue

 public Long getPrimaryKey() {

 return primaryKey;

 }

..

//A many to one annotation is inserted to identify to Hibernate that this reference has a many to one

multiplicity with the Radio Model, since there can be more than one antenna associated with each

radio model object. The join column annotation identifies the foreign key in the AntennaModel

database table and will label the foreign key column as “radioModel_id.”

@ManyToOne

 @JoinColumn(name = "RadiansioModel_id")

 public RadioModel getRm() {

 return rm;

 }…

}

9.2 Example of a Save or Update Database Operation for the AntennaModel.java Entity

One of the basic database operations is to save or update to a database with a new or revised

record. For the AntennaModel.java code (Markowski et al., 2012), the following method is

coded showing comments on implementation of a Hibernate DAO/factory design pattern for

doing a save or update. Hibernate keeps track of which objects need to be saved or updated.

// The method is public returns void, since nothing will be returned.

public void dbSaveOrUpdate() {

//A factory object is created by calling the static getFactory method on the abstract DAOFactory

class.

 DAOFactory factory = DAOFactory.getFactory();

// a database transaction is started which creates a new database transaction session.

 factory.getAntennaModelDAO().beginTransaction();

//antennaModel DAO object is retrieved

 AntennaModelDAO antennaModelDAO = factory.getAntennaModelDAO();

//the antennaModel object is saved into the DB

18

 antennaModelDAO.saveOrUpdate(this);

//the transaction is committed to the database

 factory.getAntennaModelDAO().commitTransaction();

 // the database session is closed

 factory.getAntennaModelDAO().closeSession();

 }

This code snippet shows a fairly simple example of a saveOrUpdate() method for database

interactions via DAOs. All references to Hibernate are hidden from the Java programmer, and

only OO principles need to be understood. Similarly, other database CRUD operations are Java-

coded for each Entity that needs to interact with a relational database.

10. NCAM Increased Database Read Speed Implementation for Antenna

Patterns

Reading complex three-dimensional radio antenna patterns from a database is a time-intensive

database operation. Since a typical U.S. Army wireless communication scenario may have

hundreds of radios with identical antenna patterns, a read only once for unique antenna patterns

from the database was incorporated into the database architecture of the NCAM software. The

design concept is to read all unique antenna patterns used in a scenario once and store the

antenna patterns in an array. As an antenna pattern is needed when NCAM builds its scenario in

memory, the antenna pattern is pulled from the array instead of reading it from the database.

The design implementation is incorporated into the AntennaList.java class in the antenna

package of the NCAMLib project and follows the design concept of reading the antenna patterns

into an array and dealing with multithreading using “double-checked locking” to reduce the use

of synchronization in the getInstance() method (Freeman et al., 2004, pp. 180–182).

With double-checked locking, we first check to see if an instance is created. Once inside the

second “if” block, we check again, and if still null, we create an instance, i.e.,

uniqueInstance = new AntennaPatternList();

The following condensed source code shows this implementation:

public class AntennaPatternList {

 private volatile static AntennaPatternList uniqueInstance;

 List<AntennaPattern> listApl;

 private AntennaPatternList() {

19

 listApl=new LinkedList();

 }

 public static AntennaPatternList getInstance() {

 if (uniqueInstance == null) {

 synchronized (AntennaPatternList.class) {

 //double checked locking to see if Instance is created

 //if not then synchcronize - synchronize only first time thru

 if (uniqueInstance == null) {

 uniqueInstance = new AntennaPatternList();

 }

 }

 }

 return uniqueInstance;

 }

The volatile keyword in the example ensures that multiple threads handle the unique instance

correctly when it is being initialized to the Singleton instance. The returned instance of

uniqueInstance of a AntennaPatternList is known as a Singleton, an instantiation of a class to one

object. The private constructor ensures that class may be instantiated only inside the class. The

static method is invoked to create one instance, i.e., only one instance of AntennaPatternList.

For multi-threading purposes, synchronization is required, and double-checking is incorporated

to reduce the overhead for the synchronization in the getInstance() method.

11. NCAM Database Speed Enhancements for Bulk Deletes of Database

Records

Hibernate provides methods for executing SQL via HQL that do not affect in memory state of

objects needing persistence. Hibernate as an object relation tool incorporates automatic and

transparent object/relational mapping with management of object state. HQL provides for a way

for manipulation of data directly in the database via the HQL/SQL constructs. When doing bulk

deletes from the database, HQLs provide for a speed enhancement in deleting records that cannot

be achieved via the DAO construct. NCAM incorporates this construct in the

DeploymentResult.java, PropgationResult.java, and the remaining modules.

20

12. Conclusion

This report has identified and discussed the database architecture design concepts that are

implemented into the NCAM software code. One of the time-saving features of Hibernate is the

ability to generate database schemas from the domain model entities with a simple program

incorporated into the NCAM software, i.e., NCAMLib-persist-CreateDBSSchema.java class.

Running this file recreates the database schema in the database for any changes that have been

made to the Entity persistence domain model without any additional SQL type of coding. Also,

Hibernate’s ability to address database interactions with an OO approach simplifies the

programming effort and also decreased the source code size by about 50% from our initial

assessments. This has saved a considerable amount of coding time since no tedious JDBC/SQL

coding is required to generate a revised database schema but only the attributes the domain

Entity model requires. Hibernate has the capability of implementing HQL or direct injection of

SQL into the database, which provides increased speed for certain bulk database operations that

are implemented in NCAM. A time-saving approach in developing database support for

programs is to use Hibernate in a total OO sense, so that the domain entity model may be used to

build the database schema. Once the database matures and there are a few changes in the domain

model further efficiencies and speed enhancements may be implemented using HQL or SQL

constructs. This approach was used in this project with significant time savings in the Java

coding development process.

Appendices A and B describe address setup procedures for installing the MySQL database

management system and identifying the database dictionary for the NCAM software.

21

13. References

1. Markowski, M.; Bevec, A.; Chike, N. Network Connectivity Analysis Model software

comprised of the NCAM project Source Code Listing and NCAMLib project source code

listing, U.S. Army Research Laboratory, Survivability/Lethality Analysis Directorate

Communications, Electronic Warfare Branch, 18 August 2012.

2. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. M. Design Patterns: Elements of Reusable

Object-Oriented Software; Addison-Wesley Professional: Boston, MA,1994.

3. Hibernate Home Page. www.hibernate.org/about (accessed 15 February 2013).

4. MySQL Home Page. http://dev.mysql.com/downloads/mysql/ (accessed 2 March 2010).

5. McKenzie, C. Hibernate Made Easy: Simplified Data Persistence with Hibernate and JPA

Annotations; PulpJava: Palo Alto, CA, 2008.

6. Freeman, E.; Freeman, E.; Bates, B.; Sierra, K.; Robson, E. Head First Design Patterns;

O’Reilly Media Inc.: Sebastopol, CA, 2004.

22

INTENTIONALLY LEFT BLANK.

23

Appendix A. Scenario Database Schema and Data Dictionary

24

Hibernate maps the Network Connectivity Analysis Model (NCAM) Java Entity class model in

the NCAMLib project to a “scenario” database schema. This is accomplished in the driver class

CreateDBSchema.java class found in the persist package of the source code. Hibernate uses the

HibernateUtil.recreateDatabase() method to recreate the database schema if the Entity model

changes for NCAM. This is accomplished by running the CreateDBSchema.java class. Similarly,

this is also accomplished for the BlueSystems and RedSystems databases. The following shows

the Entity model.

25

Figure A-1. NCAM Class/Entity model.

26

The Entity class model is converted to the following “scenario” database with its table layout.

The data dictionary for the database schema follows:

27

The Scenario Database and Table Associations to the NCAM Modules.

Table Name
NCAM Module

Association
Properties Captured in Table/Comments

AntennaAction Antenna
Simulates the gain at each antenna in each link.

Schedule time of antenna action and EventID.

AntennaModel Antenna
Properties of antenna, i.e., model number, height,

and antenna pattern associated.

AntennaOnOffAction

Antenna

Simulates antenna on or off action.

Antenna name, radio name, schedule time, antenna

on/off, and sector group name.

AntennaPattern Antenna

Antenna pattern properties used by blue or red radio

antennas. The patterns are read from the read-only

blueSystems or redSystems databases and then

stored also in the Scenario database. This is for users

that wish to take all their scenario information,

including antenna patterns, with them after

completing NCAM runs. This Entity is not presently

persisted into the Scenario database but into the blue

or red databases. It is available here for possible

future use.

AntennaResult Antenna

Calculated antenna results, e.g., gains between

antenna links i.e., gainRx, gainTx, bearing, azimuth,

platform color, and event time.

CCIModel Connectivity Not persisted (may be used in the future).

CCIResult Connectivity

Results for the connectivity confidence interval

(CCI) for receiving radio, S/N for receiver, signal

standard deviation (STD), signal and jammer STD,

radio reciever threshold level, z value, etc.

ConnectivityAction Connectivity Scheduled time for Connectivity Action event.

28

The Scenario Database and Table Associations to the NCAM Modules (continued).

Table Name
NCAM Module

Association
Properties Captured in Table/Comments

DeploymentResult Deployment
Deployment module results, e.g., latitude, longitude,

elevation, position.

Event
All modules, event

type-dependent

Event time and primary key of action types: antenna

action, noise action, propagation action, position

interpolation action, and transceiver action .

EventModel All modules Event time and event model name.

GpsPoint Deployment
Location in latitude/longitude, time, and speed in

kilometers per hour (kph) of platform.

InitialRadioState Initial radio state Is the radio initially turned on?

LinkBudgetAction Link budget
Scheduled time of LinkBudgetAction persisted for

paused simulation.

LinkBudgetModel Link budget Persisted for possible future use.

LinkBudgetResult Link budget Values from LinkBudgetResult.

NoiseAction Noise
Scheduled time of NoiseAction persisted for paused

simulation.

NoiseModel Noise
External natural noise and radio-generated noise

values.

NoiseResult Noise
Noise impinging on a radio node from natural to

man-made noise.

PlatformModel Deployment Platform property types, i.e., urn, role, blue, or red.

PowerChangeAction Deployment Power level changes to the radio.

PropagationAction Propagation
Scheduled time of PropagationtAction persisted for

paused simulation.

PropagationResult Propagation

Free space and path loss between

platform/radio/antenna links at time; mode, i.e.,

diffraction or line of sight, antenna type.

RadioModel Deployment, antenna Radio properties.

RadioNetInfo Deployment Radio network properties.

RadioOnOffAction Deployment
Scheduled time for radio on and platform

association.

RunControlModel Run control

Initial state of scenario, e.g., number of red and blue

platforms; scenario name; start, stop, and step of

simulation; transceiver or jammer on off; initial seed.

RunControlModel__seeds Run control Random seed control for stochastic events.

Slice Antenna
Antenna pattern slice; each antenna pattern is

composed of a number of azimuthal slices.

Slice_angle Antenna Elevation angle inside of slice.

Slice_gain Antenna
Gain due to antenna pattern at set azimuthal slice and

its corresponding elevation angle.

29

The Scenario Database and Table Associations to the NCAM Modules (continued).

Table Name
NCAM Module

Association
Properties Captured in Table/Comments

TiremModel Propagation
Environmental and electromagnetic propagation

characters, e.g., conductivity, permittivity, frequency.

WaypointList Deployment
Captures list of waypoint models associated with each

platform model.

WaypointModel Deployment

Waypoint properties of platform model as it traverses

its path, i.e., latitude, longitude, time of arrival and

departure, speed.

The Data Dictionary for Each Table Listed in Alphabetical Order.

AntennaAction

Database Field

Name/Java

Variable

Descriptive

Field Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for each record/row in

table
NA Long

scheduledTime Scheduled time

Scheduled simulated clock time when an

antenna action event occurs for starting a

paused simulator

Seconds double

30

AntennaModel

Database Field

Name/Java Variable
Descriptive Field Name Description or Purpose Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

active Active Active antenna on system. NA boolean

azimuth Azimuth angle
Azimuthal angle in degrees

relative to vehicle.

Digital

degrees
double

coordTrackingAntenna
Coordinate tracking

antenna boolean

Does the antenna track

another platform's

coordinates for fixed

coordinates?

NA boolean

elevation Elevation angle
Elevation angle relative to

vehicle's forward direction.

Digital

degrees
double

fixedAntenna Fixed antenna boolean
Is this a fixed antenna on a

platform?
NA boolean

forceColor Force color

Force color either "b" blue

for friendly or "r" red for

enemy.

NA char

height Height
Height of antenna above

ground.
Meters double

id Identification (ID) number
ID number in graphic user

interface (GUI).
NA int

modelNumber Model number

Model number of antenna

for its respective antenna

pattern; used to pull out the

proper antenna pattern for

this antenna model.

NA String

name Name
Antenna name other than

model number.
NA String

polarization Polarization

Polarization of antenna

pattern either vertical or

horizontal.

NA char

rxCableLoss Receiver cable loss
Loss in decibels for the

receiver cable.
Decibels double

rxConnectorLoss Receiver connector loss Connector loss in decibels. Decibels double

31

AntennaModel (continued).

Database Field

Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary

key for each

record/row in

table.

NA Long

rxOtherLoss Reciever other loss

Other receiver line

losses not

accounted from

connector or line.

Decibels double

rxRadomeLoss Receiver radome loss

Loss due to

radomesurrounding

antenna.

Decibels double

sectorGroup Sector group

Sector group that

the antenna

belongs to.

NA String

targetAntennaID
Target antenna ID

number

Target ID of

antenna being

tracked by this

antenna.

NA int

targetBlue Target blue

Is the target being

tracked a blue

platform?

NA boolean

targetHeight Target height

Target height

above mean sea

level in meters.

Meters double

targetLatitude Target latitude Latitude of target. Degrees double

targetLongitude Target longitude
Longitude of

target.
Degrees

double

targetPlatformID
Target platform ID

number

Target ID number

of platform being

tracked.

NA int

targetRadioID
Target radio ID

number

Target ID number

of radio being

tracked

NA int

targetURN Target URN

Target uniform

resource number of

platform being

tracked.

NA String

txCableLoss
Transmitter cable

loss

Loss of radio

transmitter cable.
Decibels double

txConnectorLoss
Transmitter

connector loss

Loss of cable

connector.
Decibels double

32

AntennaModel (continued)

Database Field

Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary

key for each

record/row in

table.

NA Long

txOtherLoss Transmitter other loss

Other losses

associated with

radio platform

while

transmitting.

Decibels double

txRadomeLoss
Transmitter radome

loss

Loss due to

radome

surrounding

antenna.

Decibels double

usedForRx Used for receiving

Is this antenna

used for

receiving signals,

true or false?

NA boolean

usedForTX Used for transmitting

Is this antenna

used for

transmitting

signals, true or

false?

NA boolean

vehTrackingAntenna
Vehicle tracking

antenna

Is this a vehicle

tracking antenna,

true or false?

NA boolean

radioModel_id
Radio model foreign

key ID number

Foreign key for

pairing this

antenna model

with the radio’s

primary key.

NA Long

33

AntennaOnOffAction

Database Field Name/Java

Variable
Descriptive Field Name Description or Purpose Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

antennaName Antenna name

The antenna name

associated with the

antenna.

NA String

antennaOn Antenna on
Is the antenna on at a

particual time?
NA boolean

blue Blue
Is the antenna associated

with a blue platform?
NA boolean

netName Network name

The network or subnet

that the antenna is

associated.

NA String

platformId
Platform identification

(ID) number

Each platform has a

unique ID number. This

is not a the primary key,

but a number used in the

source code.

NA int

radioName Radio name
Name associated with

radio.
NA String

scheduleTime Schedule time

Time schedule when the

antenna is turned on or

off from Epoch time 1

January 1970, converted

to milliseconds.

Milliseconds long

sectGroupName

Section group name

where the antenna

belongs

Name of section that the

antenna belongs to.
NA String

event_id Event ID number
Foreign key link to

event.
NA Long

34

AntennaPattern

Database Field Name/Java

Variable
Descriptive Field Name Description or Purpose Units Type

primaryKey Primary key
Captures primary key for each

record/row in table.
NA Long

frequencyIndex Frequency index

The frequency index for

multiple frequencies of a given

model, presently not used, for

future use if antenna patterns

are given for various

frequencies of a physical

antenna.

None int

modelNumber Model number
The model number/name for a

unique antenna.
None String

nsma

National Spectrum

Manager Association

(NSMA)

Is this an NSMA antenna

pattern?
NA boolean

patNum Pattern number

An NSMA-unique pattern

number; not used; maintained

for possible future use.

NA String

polarization Polarization

Polarization of antenna under

test for the first character value,

i.e., H or V; second is the

source polarization; e.g., V/H

vertical under test antenna/H is

horizontal source antenna. Due

to TIREM constraints, only

V/V or H/H are currently used.

NA String

rcm_id
Run control model ID

number

Foreign key, linking this record

with its run control model.
NA Long

Note: TIREM = Terrain Integrated Rough Earth Model and a registered trademark of Alion Science and Technology, McLean,

VA; H = horizontal linear; V = vertical linear.

35

AntennaResult

Database Field

Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row

in table.

NA Long

antRx Antenna receiver

Antenna ID number

for the receiver

antenna.

NA int

antTx Antenna transmitter

Antenna ID number

for the transmitter

antenna.

NA int

bearingAzimuth Bearing azimuth

Azimuth bearing

from transmitter

antenna, antTx; bore

sight to receiver

antenna, antRx.

Radians double

bearingElevation Bearing elevation

Elevation bearing

from transmitter

antenna, antTx; bore

sight to receiver

antenna, antRx.

Radians double

blueRx Blue receiver
Is receiver antenna

blue or friendly?
NA boolean

blueTx Blue transmitter
Is transmitter antenna

blue or friendly?
NA boolean

eventTime Event time

Event time in

milliseconds since

Epoch time.

Milliseconds long

gainRx Gain of receiver
Gain at the receiver,

in decibels isotropic.
Decibels isotropic double

gainTx Gain of transmitter

Gain at the

transmitter, in

decibels isotropic.

Decibels isotropic double

idTx
Identification

transmitter

Identification number

of transmit platform,

idTx; for link

between idTx and

idRx.

NA int

idRx Identification receiver

Identification number

of receive platform,

idRx; for link

between idTx and

idRx.

NA int

36

AntennaResult (continued)

Database Field

Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row

in table.

NA Long

radioTx Radio transmitter

Radio identification

number for transmit

radio and radioTx; for

link between radios,

radioTx, and radioRx.

NA int

radioRx Radio receiver

Radio identification

number for receive

radio and radioRx;

for link between

radios, raduiTx0, and

radioRx.

NA Int

t Time

Antenna Result time

for simulation

snapshot time from

Epoch time 1 January

1970.

Milliseconds long

rcm_id
Run control model ID

number

Foreign key, linking

this record with its

run control model.

NA Long

CCIModel (persisted for future use)

Database Field

Name/Java

Variable

Descriptive Field

Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

runControlModel_id
Run control model

ID
Foreign key. NA int

37

CCIResult

Database Field

Name/Java

Variable

Descriptive Field

Name

Description

or Purpose
Units Type

primaryKey Primary key

Captures primary

key for each

record/row in

table.

NA Long

antRx

Antenna receiver

identification

number

Identification

number.
NA int

antTx

Antenna

transmitter

identification

number

Identification

number.
NA int

blueRx Blue receiver
Is it a blue force

receiver?
NA boolean

blueTx Blue transmitter
Is it a blue force

transmitter?
NA boolean

CCI

Connectivity

confidence

interval

Captures the CCI

value for tx to rx

link.

Decibels double

idRx
Identification

number receiver

Identification

number.
NA intt

idTx

Identification

number

transmitter

Identification

number.
NA int

jamerStdDev
Jammer standard

deviation

Jammer standard

deviation for the

propagation mode

to receiver per

TIREM values.

Decibels double

radioRx

Radio reciever

identification

number

Identification

number.
NA int

38

 CCIResult (continued).

Database

Field

Name/Java

Variable

Descriptive Field

Name

Description

or Purpose
Units Type

primaryKey Primary key

Captures primary

key for each

record/row in

table.

NA Long

radioTx

Radio transmitter

identification

number

Identification

number.
NA int

sAndJStdDev

Signal and

jammer standard

deviation

Combined

standard deviation

for propgation

mode calculated

as RMS value for

the jammer and

signal.

Decibels double

sigStdDev
Signal standard

deviation

Signal mode of

propagation

standard deviation

from TIREM.

Decibels double

signalToNoise Signal to noise
S/N ratio at the

receiver.
Decibels double

threshold Threshold

S/N decibels at

50% packet

completion

threshold of radio.

Decibels double

t Time

CCI result time

for simulation

snapshot time

from Epoch time 1

January 1970.

Milliseconds long

z Z value

How many

standard

deviations an

observation or

datum is above or

below the mean?

NA double

Note: S/N = signal-to-noise ratio; RMS = root-mean-square.

39

CCIResult (continued).

Database Field

Name/Java

Variable

Descriptive

Field Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary

key for each

record/row in

table.

NA Long

rcm_id
Run control

model ID#

Run control

model foreign key

for database

purposes.

NA Long

ConnectivityAction

Database Field

Name/Java

Variable

Descriptive

Field Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures

primary key for

each record/row

in table.

NA Long

scheduledTime Scheduled time

Current

scheduled time

for simulation

snapshot time

from Epoch time

1 January 1970.

Milliseconds long

event_id Event ID

Foreign key

linking to parent

event.

NA Long

DeploymentAction

Database Field

Name/Java

Variable

Descriptive

Field Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures

primary key for

each record/row

in table.

NA Long

scheduledTime Scheduled time

Current

scheduled time

for simulation

snapshot time

from Epoch time

1 January 1970.

Milliseconds long

event_id Event ID

Foreign key

linking to parent

event.

NA Long

40

DeploymentResult

Database Field

Name/Java Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

blue Blue Is platform blue? NA boolean

elevation Elevation

Elevation is height

above sea level for

platform.

Meters double

fwdX Forward x

Platform’s forward

pointing unit vector;

unit vectors are the

local coordnate system

axes of the platform,

value along x-axis.

NA double

fwdY Forward y

Platform’s forward-

pointing unit vector,

y-axis.

NA double

fwdZ Forward z

Platform’s forward-

pointing unit vector,

z-axis.

NA double

id Identification
ID number of platform

assigned in GUI.
NA int

latitude Latitude Latitude of platform.
Digital

degrees
double

longitude Longitude Longitude of platform.
Digital

degrees
double

posX Position x

Platform’s Cartesian

coordinate position;

Cartesian coordinates

in NCAM have origin

at earth center, z-axis

through north pole,

x-axis through Prime

Meridian, y-axis per

right hand rule.

NA double

posY Position y
Platform’s Cartesian

position.
NA double

posZ Position z
Platform’s Cartesian

position.
NA double

rightX Right x
Platform’s right-

pointing unit vector.
NA double

rightY Right y
Platform’s right-

pointing unit vector.
NA double

41

DeploymentResult (continued).

Database Field

Name/Java Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

rightZ Right z
Platform’s right-

pointing unit vector.
NA double

t Time

Time for this

deployment result for

simulation from Epoch

time 1 January 1970.

Milliseconds long

upX Up x

Platform’s upward-

pointing unit vector,

x value.

NA double

upY Up y

Platform’s upward-

pointing unit vector,

y value.

NA double

upZ Up z

Platform’s upward-

pointing unit vector, z

value.

NA double

platformModel_id Platform model ID
Foreign key linking to

the platform model.
NA long

rcm_id Run control model ID
Foreign key linking to

the run control model.
NA long

42

Event

Database Field

Name/Java

Variable

Descriptive Field

Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

eventTime Event time

Time that event should be

executed from Epoch time,

1 January 1970.

Milliseconds long

aa_primaryKey
Antenna action

primary key

Foreign key for linking this

row to AntennaAction table.
NA Long

aof_primaryKey

Antenna on/off

action primary

key

Foreign key for linking this

row to AntennaOnOffAction

table.

NA Long

ca_primaryKey

Connectivity

action primary

key

Foreign key for linking this

row to ConnectivityAction

table.

NA Long

la_primaryKey
Link budget

action primarykey

Foreign key for linking this

row to LinkBudgetAction

table.

NA Long

na_primaryKey
Noise action

primary key

Foreign key for linking this

row to the NoiseAction table.
NA Long

pa_primaryKey
Propagation action

primary key

Foreign key for linking this

row to the

PropagationAction table.

NA Long

pca_primaryKey

Power change

action primary

key

Foreign key for linking this

row to the

PowerChangeAction table.

NA Long

pia_primarykey

Position

interpolation

primary key

Foreign key for linking this

row to the

PositionInterpolationAction

table.

NA Long

43

Event (continued).

Database Field

Name/Java

Variable

Descriptive Field

Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

rcm_id
Run control model

ID

Foreign key for linking to

RunControlModel table.
NA Long

ta_primaryKey
Transceiver action

primary key

Foreign key for linking this

row to the TransceiverAction

table.

NA Long

EventModel

Database Field

Name/Java

Variable

Descriptive

Field Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary

key for each

record/row in

table.

NA Long

description Description

Description of

Event being saved

and state.

NA String

eventSaved Event saved
Description of

even type.
NA String

eventTime Event time
Time for

scheduled event.

Seconds from

Epoch time
double

platform_id
Platform ID

number

Foreign key

connecting event

to platform

model.

NA long

44

GpsPoint

Database Field

Name/Java Variable
Descriptive Field Name Description or Purpose Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

latitude Latitude Latitude of GPS unit.
Decimal

degrees
double

longitude Longitude Longitude of GPS unit.
Decimal

degrees
double

speed Speed
Speed of GPS unit

mounted on platform.
Kilometers/hour double

t Time

Unix epoch time since

00:00:00 coordinated

universal time on 1

January 1970; captures

time of data capture.

Milliseconds long

platform_id Platform ID number

Foreign key connecting

GpsPoint to platform

model.

NA Long

InitialRadioState

Database Field

Name/Java

Variable

Descriptive

Field Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary

key for each

record/row in table.

NA Long

initiallyOn Initially on

Is the radio initially

on at the start of the

scenario?

NA boolean

name Name Name of radio. NA String

rcm_id
Run control

model ID

Foreign key for

linking to

RunControlModel

table.

NA Long

45

LinkBudgetAction

LinkBudgetModel (unused)

Database Field

Name/Java

Variable

Descriptive Field

Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

Database Field

Name/Java Variable
Descriptive Field Name Description or Purpose Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

scheduledTime Scheduled time

Current scheduled time for

simulation snapshot time

from Epoch time 1 January

1970.

Milliseconds long

event_id Event ID
Foreign key linking to parent

event.
NA long

46

LinkBudgetResult

Database Field

Name/Java Variable

Descriptive Field

Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for each

record/row in table.
NA Long

blueRx Blue receiver Is it blue receiver? NA boolean

blueTx Blue transmitter Is it blue transmitter? NA boolean

bwCorrectionFactor_dB
Band width

correction factor

Ratio of radio noise equivalent

bandwidth/jammer bandwidth.
Decibels double

Eirp_dBm
Effective radiated

power
Effective radiated power.

Decibel

milliwatts
double

idAntennaRx
ID # of antenna on

receiver
ID number of receiver antenna. NA int

idAtnennaTx
ID # of antenna on

transmitter

ID number of transmitter

antenna.
NA int

idPlatformRx
ID # of platform

recevier

ID number of receiver

platform.
NA int

idPlatformTx
ID # of platform

transmitter

ID number of transmitter

platform.
NA int

idRadioRx
ID # of radio

reciever
ID number of receiver radio. NA int

idRadioTx
ID # of radio

transmitter

ID number of transmitter

radio.
NA int

jammerPower_W
Jammer power in

watts

Power wattage of jammer in

watts.
Watts double

Signal_dBm Signal dBm
Signal strength in decibel

milliwatts.

Decibel

milliwatts
double

snr Signal to noise ratio S/N ratio in decibels. Decibels double

t Time
Time deployment result from

Epoch time.
Seconds long

totalNoise Total noise
Total noise for all

environments.

Decibel

milliwatts
double

txPwr_dBm Transmitter power
Transmitter power in decibel

milliwatts.

Decibel

milliwatts
double

rcm_id
Run control model

ID

Run control model foreign

key.
NA Long

47

NoiseAction

Database Field

Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

scheduledTime Scheduled time

Scheduled simulated

clock time when an

noise action event

occurs for starting a

paused simulator.

Seconds double

event_id Event ID
Foreign key that ties

this action to the event.
NA double

48

NoiseModel

Database Field Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary

key for each

record/row in

table.

NA Long

cosmicRadtion Cosmic radiation

Cosmic radiation

contributing to

noise; default is

2.725 from big

bang remnant.

Degrees

Kelvin
double

earthHeating Earth heating

Earth heating

background noise

of 290 °K default.

Degrees

Kelvin
double

moonLatitude Moon latitude

Moon latitude

above antenna

contributing to

background noise.

Decimal

degrees
double

moonLongitude Moon longitude

Moon longitude

above antenna

contributing to

background noise.

— —

noiseBandwidth Noise band width
Radio noise

bandwidth.
Hz double

noiseFigure Noise figure
Noise figure for

radio.
Decibels int

receiverTemp Receiver temperature

Receiver

temperature from

noise module

input (input as

Fahrenheit stored

in degrees

Kelvin).

Degrees

Kelvin
double

regionalNoise Regional noise

Category of noise,

i.e., rural,

suburban, urban.

NA String

rural Rural

Is the platform in

a rural

environment?

NA boolean

suburban Suburban

Is platform in a

suburban

environment?

NA boolean

sunLatitude Sun latitude
Latitude of Sun

above antenna.

Decimal

degrees
double

sunLongitude Sun longitude
Longitude of Sun

above antenna.

Decimal

degrees
double

49

NoiseModel (continued).

Database Field Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary

key for each

record/row in

table.

NA Long

urban Urban

Is platform in a

urban

environment?

NA boolean

runControlModel_id
Run control model

ID

Foreign key that

links this record

to the run control

model.

NA Long

50

NoiseResult

Database Field

Name/Java Variable

Descriptive

Field Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

blue Blue Is it a blue receiver? NA boolean

cosmicNoise_K
Cosmic noise

degrees Kelvin

Cosmic background

noise in degrees

Kelvin.

Degrees

Kelvin
double

earthNoise_K
Earth noise in

degrees Kelvin

Earth background

noise.

Degrees

Kelvin
double

externalNoise_K

External noise

in decibel

milliseconds

External noise in

decibel milliseconds.

Decibel

milliseconds
double

galacticNoise_dBm

Galactic noise

in decibel

milliseconds

Galactic background

noise in decibel

milliseconds

Decibel

milliseconds
double

Id ID # ID # of platform. NA int

idRadio ID # of radio ID # of radio. NA int

internalNoise_dBm Internal noise Internal noise of radio.
Decibel

milliseconds
double

noiseFigure_dBm

Noise figure in

decibel

milliseconds

Noise figure of radio.
Decibel

milliseconds
double

receiverNoiseTemp_K

Receiver noise

temperature in

degrees Kelvin

Receiver noise

temperature.

Degrees

Kelvin
double

ruralNoise_dBm

Rural noise in

decibel

milliseconds

Rural noise.
Decibel

milliseconds
double

suburbanNoise_dBm

Surburban noise

in decibel

milliseconds

Suburban noise.
Decibel

milliseconds
double

t Event time

Event time when noise

occurs stored from

Epoch time

Seconds double

totalNoise_dBm

Total noise in

decibel

milliseconds

Total noise value in

decibel milliseconds.
Decibels double

urbanNoise_dBm

Urban noise in

decibel

milliseconds

Urban noise.
Decibel

milliseconds
double

rcm_id
Run control

model ID

Foreign key linking

this record with the

RunControlModel

table.

NA Long

51

PlatformModel

Database Field

Name/Java Variable
Descriptive Field Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

affiliation Affiliation
Platform affiliation to

upper level groups.
NA String

Blue Blue
Is the platform

friendly, i.e., blue?
NA boolean

bumperNum Bumper number Platform ID number. NA string

id ID
ID number for GUI

purposes.
NA int

ipAddr
Internet provider (IP)

address

IP address of

platform.
NA String

nodeNumber Node number

Node number to keep

track for some user

requirements.

NA String

numWaypoints Number of waypoints

Number of waypoints

from beginning to the

end of the simulation.

NA int

platformClass Platform class
Ground, air, sea,

space.
NA String

rolePlatform Platform role

What role does the

platform play, e.g.,

commander, leader,

relay.

NA String

type Type

Type of platform, e.g.,

jammer, platform

description.

NA String

urn Uniform resource number

Unique identification

used in the U.S.

Army, for each

platform, similar to

serial number.

NA String

rcm_id
Run control model

identification number

Foreign key, for

pairing the run control

model primary key

with this record, i.e.,

this foreign key =

primary key of run

control model record.

NA Long

52

PowerChangeAction

Database Field

Name/Java Variable
Descriptive Field Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

blue Blue

Is power change

action for blue radio,

i.e., friendly?

NA boolean

netName Network name
Name of network the

radio belongs to.
NA String

platformID Platform ID number

Platform ID number

used by NCAM to

track platform.

NA int

powerLevel Power level Power level of radio. Watts double

radioName Radio name Name of the radio. NA String

scheduledTime Scheduled time

Scheduled simulated

clock time when a

power change action

event occurs for

starting a paused

simulator.

Seconds double

event_id Event ID

Foreign key that ties

this action to the

event.

NA double

53

PropagationAction

Database Field

Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures

primary key for

each record/row

in table.

NA Long

scheduledTime Scheduled time

Scheduled

simulated clock

time when a

propagation

action event

occurs for

starting a paused

simulator.

Seconds double

event_id Event ID

Foreign key that

ties this action to

the event.

NA double

54

PropagationResult

Database Field

Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

antRx Antenna receiver
Receiver antenna ID

number from user input.
NA int

antTx Antenna transmitter
Transmitter antenna ID

number from user input.
NA int

azimuth Azimuth

Azimuth of platform Tx

or idTx to platformRx or

idRx; the angle with a

line from Tx pointing at

true north and to

platformRx or idRx,

measuring counter

clockwise as positive.

Decimal

degrees
double

blueRx Blue receiver
Is the receiver a blue

receiver?
NA boolean

blueTx Blue transmitter
Is the transmitter radio

blue?
NA boolean

freeSpaePathLoss Free space path loss
Free space loss in

decibels.
Decibels double

idRx ID receiver
Receiver platform ID

number.
NA int

idTx ID transmitter
Transmitter platform ID

number.
NA int

mode Mode

Mode of propagation

loss, i.e., line of sight or

diffraction.

NA String

55

PropagationResult (continued).

Database Field

Name/Java Variable
Descriptive Field Name Description or Purpose Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

pathLoss Path loss Path loss in decibels. Decibels double

radioRx Radio receiver
Receiver radio ID

number.
NA int

radioTx Radio Transmitter
Transmitter radio ID

number.
NA int

takeoffRx2D Take off receiver 2-D

Take off angle of

receiver in two

dimensions (2-D).

Radians double

takeoffTx2D Take off transmitter 2-D
Take off angle of

transmitter in 2-D.
Radians double

takeoffRxX
Take off angle of receiver

X direction

Take off angle of

receiver in unit vector

form -X direction.

Meters double

takeoffRxY
Take off angle of receiver

Y direction

Take off angle of

receiver in unit vector

form -Y direction.

Meters double

takeoffRxZ
Take off angle of receiver

Z direction

Take off angle of

receiver in unit vector

form -Z direction.

Meters double

takeoffTx2D Take off transmitter 2-D
Take off angle of

transmitter in 2-D.
Radians double

takeoffTxX
Take off angle of

transmitter X direction

Take off angle of

transmitter in unit vector

form -X direction.

Meters double

takeoffTxY
Take off angle of

transmitter Y direction

Take off angle of

transmitter in unit vector

form -Y direction.

Meters double

takeoffTxZ
Take off angle of

transmitter Z direction

Take off angle of

transmitter in unit vector

form -Z direction.

Meters double

t Time

Time of snapshot for

captured deployment

result.

Seconds double

rcm_id Run control model ID

Foreign key linking the

record in propagation

result with the run

control model primary

key.

NA Long

56

RadioModel

Database Field Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

bandwidth Bandwidth
Bandwidth of radio

waveform.
Megahertz double

bw60dB Bandwidth 60 dB
Radio bandwidth at

(-60dB).
Megahertz double

bw60dB Bandwidth 6 dB
Radio bandwidth at

(-6dB).
Megahertz double

frequency Frequency Frequency of radio. Megahertz double

id ID number
ID number of radio set

in GUI.
NA —

insertionLoss Insertion loss
Insertion loss in

selectivity.
Decibels double

modulationName Modulation name
Modulation name of

radio waveform.
NA String

name Name

Name of radio,

identified as type in

GUI.

NA String

net Network
Network radio belongs

to.
NA String

noiseEquivalentBandwidth
Noise equivalent

bandwidth

Noise equivalent

bandwidth of radio.
Megahertz double

noiseFigure Noise figure Noise figure for radio. Decibels double

power Power Radio power. Watts double

radioOn Radio on
Is the radio on

initially?
NA boolean

sensitivity Sensitivity Sensitivity of radio.
Decibel

milliseconds
double

threshold Threshold

Signal to noise lab

determine threshold of

50% packet completion

rate.

Decibels double

platformModel_id
Platform model ID

number

Foreign key linking

radio model record

with platform model

primary key.

NA Long

57

RadioNetInfo

Database Field Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

name Name Name of radio. NA String

net Network Name of network. NA String

rigOn Rig on Is the network active? NA Boolean

RadioOnOffAction

Database Field Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

blue Blue
Is action for blue

radio?
NA boolean

netName Network name

The name of the

network radio is

connected to.

NA String

platformId
Platform

identification

Platform identification

number.
NA int

radioName Radio name Name of radio. NA String

radioOn Radio on
Is the radio on

initially?
NA boolean

scheduledTime Scheduled time

Scheduled simulated

clock time when a

radio on/off action

event occurs for

starting a paused

simulator.

Seconds double

event_id Event ID
Foreign key that ties

this action to the event.
NA double

58

RunControlModel

Database Field

Name/Java Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary key

for each record/row in

table.

NA Long

distanceAir Distance air

Maximum air distance

for radio

communication when

recalculation occurs.

Meters double

distanceGround Distance ground

Maximum ground

distance for radio

communication when

recalculation occurs.

Meters double

firstSampleTime First sample time
Time in seconds when

scenario is sampled.
Seconds double

lastSampleTime Last sample time

Time in seconds when

the last the scenario is

sampled.

Seconds double

numReplication Number of replications

How many times does

one wish to rerun the

scenario with different

random seeds? Default

is one.

NA Int

runDate Run date Date run was executed. NA String

sampleTimeStep Sample time step

The snapshot time

interval to sample the

NCAM run.

Milliseconds double

scenarioName Scenario name
The name of the run

scenario.
NA String

subVersionControlNo
Subversion control

number

Subversion control

number used to track

NCAM code freeze.

NA String

useWgs84 Use WGS84
Use the WGS84

coordinate system.
NA boolean

username User name
User name of NCAM

scenario run.
NA String

noiseModel_id Noise model ID

Foreign key, linking

noise model to run

control model.

NA Long

tiremModel_id TIREM model

Foregin key linking

TIREM model with run

control model.

NA Long

59

RunControlModel_seeds

Database Field Name/Java

Variable

Descriptive Field

Name
Description or Purpose Units Type

RunControlModel_primayKey

Run control

model primary

key

Captures primary key for

each record/row in table; it is

mapped by Hibernate as an

array/table generated in the

RunControlModel.java class.

NA Long

SeedNumber Seed number

Random seed number

generated by pseudo random

key generator; needs to be

different or the same

depending on results wishing

to obtain if running

replications of the same

scenario.

— —

seed_index Seed index
Seed index in the index of

the array holding the seed.
NA int

Slice (not used in Scenario database – retained for possible future use).

Database Field

Name/Java

Variable

Descriptive Field

Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for each

record/row in table.
NA Long

azimuth Azimuth

Azimuth angle of slice for a 3-D

antenna pattern. The azimuth angle

progresses counterclockwise

starting at north=0 rad, i.e., math

notation.

Radians double

maxAngle Maximum angle

Maximum angle that slices are

available for the 3-D antenna

pattern; usually 6.28 rad, i.e.,

2 Pi.

Radians double

minAngle Minimum angle

Minimum angle that slices are

available for the 3-D antenna

pattern; usually 0 rad.

Radians double

AntennaPattern_id
Antenna Pattern

ID number

Foreign key for linking this table

to the antenna pattern table.
NA Long

60

Slice_angle (not used in Scenario database – retained for possible future use).

Database Field

Name/Java Variable

Descriptive Field

Name
Description or Purpose Units Type

Slice_primaryKey

Foreign key linking

this entry to the

Slice

Captures foreign key for

each row linking this

entry to the slice table;

since Hibernate

generates these keys

from an array

persistence model, no

primary keys are

generated; only foreign

keys.

NA Long

angle
Elevation angle

within the slice

Elevation angle starting

at 0 rad or horizontal to

the tangent to the earth's

surface, and progressing

upward.

Radians double

angle_index Angle index

Hibernate generates an

index for each elevation

entry row. This

corresponds to the same

index as in the

Slice_gain table. Thus,

as the elevation

progresses through each

index, so do the

corresponding values in

the Slice_gain table. The

Slice_primaryKey and

the index link the values

in this table to a unique

slice.

NA long

61

Slice_gain (not used in Scenario database – retained for possible future use).

Database Field

Name/Java Variable

Descriptive Field

Name
Description or Purpose Units Type

Slice_primaryKey
Foreign key linking

this entry to the slice

Captures foreign key for each for

linking this entry to the slice table;

since Hibernate generates these

keys from array persistence

models, no primary keys are

generated; only foreign keys.

NA Long

gain Gain

Gain from antenna pattern at the

slice, and elevation angle identified

by the gain_index and

Slice_prmaryKey.

Decibels double

gain_index Gain index

Hibernate generates an index for

each gain row entry. This

corresponds to the same index as in

the Slice_angle table. The

Slice_primaryKey and the gain

index link the values in this table

to a unique slice.

NA long

62

TiremModel

Database Field

Name/Java Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key

Captures primary

key for each

record/row in table.

NA Long

conductivity Conductivity Conductivity. siemens (S)/m Float

frequency Frequency
Frequency of

propagating wave.
Megahertz double

humidity Humidity
Humidity of

atmosphere.
g/m**3 Float

interpolationType Interpolation type

Interpolation type

required in

TIREM; default

“nearest.”

NA String

lossFraction Loss fraction

Percentage of year

path loss is not

exceeded.

Percentage float

permittivity Permittivity

Relative

permittivity from

1–100; default =

15.

NA float

refractivity Refractivity
200–400 N units;

default = 295.
NA float

rcm_id Run control model id

Foreign key pairing

this record with run

control model

primary key.

NA Long

63

WaypointModel

Database Field

Name/Java

Variable

Descriptive

Field Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

accelerate Accelerate

Get platform’s

acceleration from blue

database; default = 2.0.

m/s**2 double

allWps All waypoints
Total number of

waypoints in scenario.
NA int

arrivalSpeed Arrival speed

Arrival speed of

platform at destination

waypoint.

Meters/second double

arrivalTime Arrival time
Arrival time of platform

at destination waypoint.
Seconds double

changed Changed Unused. — —

cruiseSpeed Cruise speed Platform cruising speed. Meters/second double

departTime Depart time
Time platform departs

destination waypoint.
Seconds double

dist Distance
Distance between two

consecutive way points.
Meters double

elevation Elevation
Platform’s elevation

above sea level.
Meters double

initDepartTime Initial depart time
Depart time at initial

way point.
Seconds double

initSpeed Initial speed
Arrival speed at initial

way point
Seconds double

initTime Initial time
Arrival time at initial

way point.
Seconds double

isChangedLat
Is changed

latitude

Has latitude changed for

platform compared to

previously?

NA boolean

isChangedLong
Is changed

longitude

Has longitude changed

for platform compared to

previously?

NA boolean

k k
Ratio of altitude/to

distance traversed.
NA double

latitude Latitude
Current latitude of

platform.

Decimal

percentage
double

loiterSec Loiter seconds
Time platform loiters at

waypoint.
Seconds double

loiterSpeed Loiter speed

Loiter speed of aircraft

above a certain loiter

point.

Seconds double

longitude Longitude
Current longitude of

platform.
Decimal ° double

maxCruise Maximum cruise

Maximum cruising

speed of platform to be

read in from blue

database; default = 20.

Meters/second double

64

WaypointModel

Database Field

Name/Java Variable

Descriptive

Field Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

maxVel
Maximum

velocity

Maximum speed of

platform to be read in from

blue database; default = 20.

Meters/second double

minVel
Minimum

velocity

Minimum speed of

platform to be read.
Meters/second double

t1 Time 1

Time it takes platform to

accelerate to cruising

speed.

Seconds double

t2 Time 2
Time it takes platform to

cruise.
Seconds Double

wayPt Way point
Platform’s current way

point.
NA int

platformModel_ID
Platform model

ID number

Foreign key tying this

record waypoint with

platformModel.

NA Long

The “blueSystems” Database Tables and the Association to NCAM Modules

Table Name
NCAM Module

Association
Properties Captured in Table/Comments

AntennaPattern Antenna
Antenna pattern properties used by blue radio

antennas.

PlatformModelBlue Deployment
Blue platforms that are presented in the platforms

tab of the deployment module.

RadioModelBlue Deployment Radio properties of blue/friendly forces.

Slice Antenna
Antenna pattern slice, each antenna pattern is

composed of a number of azimuth slices.

Slice_angle Antenna Elevation angle inside of slice.

Slice_gain Antenna
Gain due to antenna pattern at set azimuth slice and

its corresponding elevation angle.

blueSystems Database Table Layout

65

The Data Dictionary for Each Table in the Blue Database in Alphabetical Order

AntennaPattern

Database FieldName/Java

Variable
Descriptive Field Name Description or Purpose Units Type

primaryKey Primary key
Captures primary key for each

record/row in table.
NA Long

frequencyIndex Frequency index

The frequency index for multiple

frequencies of a given model,

presently not used, for future use if

antenna patterns are given for various

frequencies of a physical antenna.

None Int

modelNumber Model number
The model number/name for a unique

antenna.
None String

polarization Polarization

Polarization of antenna under test for

the first character value, i.e., H or V;

and the second is the source

polarization; e.g., V/H vertical under

test antenna/H is horizontal source

antenna. Due to TIREM constraints,

only V/V or H/H are currently used.

NA String

66

PlatformModelBlue

Database Field

Name/Java Variable
Descriptive Field Name Description or Purpose Units Type

primaryKey Primary key
Captures primary key for each

record/row in table.
NA Long

affiliation Affiliation
Platform affiliation to upper level

groups.
NA String

antenna Antenna
General antenna category, e.g., whip,

vertical.
NA String

antennaHeight Antenna height Antenna height from base to tip. Meters double

forcePlatform Force platform Force of platform, i.e., red or blue. NA String

frequency Frequency Frequency of radio. Megahertz double

ipAddr IP address IP address of platform. NA String

platformClass Platform class

Class of platform, i.e., ground, air,

space, water. Value extracted from

blueDB; only ground available

currently.

NA String

polarization Polarization
Polarization of antenna, only V or H

available.
NA char

power Power Power of radio. Watts double

radio Radio
Radio model name, e.g.,

SINCGARS.
NA String

radioOn Radio on Is the radio on? NA boolean

rolePlatform Platform role
What role does the platform play,

e.g., commander, leader, relay?
NA String

type Type
Type of platform, e.g., jammer,

platform description.
NA String

urn Uniform resource number

Unique identification used in the

U.S. Army, for each platform,

similar to serial number.

NA String

Note: SINCGARS = Single Channel Ground and Airborne Radio System.

67

RadioModelBlue

Database Field

Name/Java Variable

Descriptive

Field Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

bandwidth Bandwidth
Bandwidth of radio

waveform.
Megahertz double

bw60db
Bandwidth 60 dB

down

In selectivity, stopband at

(-60dB).
Megahertz double

bw6db
Bandwidth 6 Db

down

In selectivity, passband at

(-6dB).
Megahertz double

frequency Frequency Frequency of radio. Megahertz double

insertionLoss Insertion loss Insertion loss in selectivity. Decibels double

noiseEquivalentBand

width

Noise equivalent

bandwidth

Noise equivalent bandwidth

of radio.
Megahertz double

noiseFigure Noise figure Noise figure for radio. Decibels double

power Power Radio power. Watts double

radio Radio

Radio name as seen by user

in deployment setup; radios

tab "Type" combo selection.

Values are shown from blue

database, e.g., SINCGARS,

EPLRS.

NA String

sensitivity Sensitivity Sensitivity of radio.
Decibel

milliseconds
double

Note: EPLRS = Enhanced Position Location Reporting System.

68

Slice

Database Field

Name/Java Variable

Descriptive Field

Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for each

record/row in table.
NA Long

azimuth Azimuth

Azimuth angle of slice for a 3-D

antenna pattern. The azimuth

angle progresses counter-

clockwise starting at

north = 0 rad, i.e., math notation.

Radians double

maxAngle Maximum angle

Maximum angle that slices are

available for the 3-D antenna

pattern; usually 6.28 rad, i.e.,

2 Pi.

Radians double

minAngle Minimum angle

Minimum angle that slices are

available for the 3-D antenna

pattern; usually 0 rad.

Radians double

AntennaPattern_id
Antenna pattern ID

number

Foreign key for linking this table

to the antenna pattern table.
NA Long

69

Slice_angle

Database Field

Name/Java

Variable

Descriptive

Field Name
Description or Purpose Units Type

Slice_primaryKey

Foreign key

linking this

entry to the

slice

Captures foreign key for

each row linking this entry

to the slice table; since

Hibernate generates these

keys from an array

persistence model, no

primary keys are generated;

only foreign keys.

NA Long

angle

Elevation

angle within

the slice

Elevation angle starting at

0 rad or horizontal to the

tangent to the Earth's

surface, and progressing

upward.

Radians double

angle_index Angle index

Hibernate generates an

index for each elevation

entry row. This corresponds

to the same index as in the

Slice_gain table. Thus, as

the elevation progresses

through each index, so do

the corresponding values in

the Slice_gain table. The

Slice_primaryKey and the

index link the values in this

table to a unique slice.

NA long

70

Slice_gain

Database Field

Name/Java Variable

Descriptive Field

Name
Description or Purpose Units Type

Slice_primaryKey
Foreign key linking

this entry to the slice

Captures foreign key for each for

linking this entry to the slice table;

since Hibernate generates these keys

from array persistence models, no

primary keys are generated; only

foreign keys.

NA Long

gain Gain

Gain from antenna pattern at the slice,

and elevation angle identified by the

gain_index and Slice_prmaryKey.

Decibels double

gain_index Gain index

Hibernate generates an index for each

gain row entry. This corresponds to

the same index as in the Slice_angle

table. The Slice_primaryKey and the

gain index link the values in this table

to a unique slice.

NA long

The “redSystems” Database Tables and the Association to NCAM Modules

Table Name
NCAM Module

Association
Properties Captured in Table/Comments

AntennaPattern Antenna Antenna pattern properties used by red radio antennas.

PlatformModelRed Deployment
Red platforms that are presented in the platforms tab of

the deployment module.

RadioModelRed Deployment Radio properties of red/enemy forces

Slice Antenna
Antenna pattern slice, each antenna pattern is composed

of a number of azimuth slices.

Slice_angle Antenna Elevation angle inside of slice.

Slice_gain Antenna
Gain due to antenna pattern at set azimuth slice and its

corresponding elevation angle.

redSystems Database Table Layout

71

The Data Dictionary for Each Table in the Red Database in Alphabetical Order.

AntennaPattern

Database Field Name/Java

Variable
Descriptive Field Name Description or Purpose Units Type

primaryKey Primary key
Captures primary key for each

record/row in table.
NA Long

frequencyIndex Frequency index

The frequency index for multiple

frequencies of a given model,

presently not used, for future use

if antenna patterns are given for

various frequencies of a physical

antenna.

None int

modelNumber Model number
The model number/name for a

unique antenna.
None String

polarization Polarization

Polarization of antenna under

test for the first character value,

i.e., horizontal (H) or vertical

(V); the second is the source

polarization; e.g., V/H vertical

under test antenna/H is

horizontal source antenna. Due

to TIREM constraints, only V/V

or H/H are currently used.

NA String

PlatformModelRed

Database Field

Name/Java

Variable

Descriptive

Field Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for each record/row in

table.
NA Long

affiliation Affiliation Platform affiliation to upper level groups. NA String

antenna Antenna General antenna category, e.g., whip, vertical. NA String

antennaHeight Antenna height Antenna height from base to tip. Meters double

forcePlatform Force platform Force of platform, i.e., red or blue . NA String

frequency Frequency Frequency of radio. Megahertz double

ipAddr IP address IP address of platform. NA String

platformClass Platform class

Class of platform, i.e., ground, air, space, water;

value extracted from redDB; only ground

available currently.

NA String

polarization Polarization Polarization of antenna, only V or H available. NA char

power Power Power of radio. Watts double

radio Radio Radio model name, e.g., SINCGARS. NA String

radioOn Radio on Is the radio on? NA boolean

rolePlatform Platform role
What role does the platform play, e.g.,

commander, leader, relay?
NA String

type Type
Type of platform, e.g., jammer, platform

description.
NA String

urn
Uniform

resource number

Unique identification used in the U.S. Army, for

each platform, similar to serial number.
NA String

72

RadioModelRed

Database Field

Name/Java Variable

Descriptive Field

Name
Description or Purpose Units Type

primaryKey Primary key
Captures primary key for

each record/row in table.
NA Long

bandwidth Bandwidth
Bandwidth of

radiowaveform.
MHz double

bw60db
Bandwidth 60 dB

down

In selectivity, stopband at

(-60dB).
MHz double

bw6db
Bandwidth 6 dB

down

In selectivity, passband at

(-6dB).
MHz double

frequency Frequency Frequency of radio. MHz double

insertionLoss Insertion loss Insertion loss in selectivity. Decibels double

noiseEquivalentBand

width

Noise equivalent

bandwidth

Noise equivalent bandwidth

of radio.
Megahertz double

noiseFigure Noise figure Noise figure for radio. Decibels double

power Power Radio power. Watts double

radio Radio

Radio name as seen by user

in deployment setup; radios

tab “Type” combo selection.

Values are shown from red

database, e.g., SINCGARS,

EPLRS.

NA String

sensitivity Sensitivity Sensitivity of radio.
Decibel

milliseconds
double

73

Slice

Database Field

Name/Java

Variable

Descriptive Field

Name

Description or

Purpose
Units Type

primaryKey Primary key
Captures primary key for each

record/row in table.
NA Long

azimuth Azimuth

Azimuth angle of slice for a 3-D

antenna pattern. The azimuth angle

progresses counterclockwise starting at

north = 0 rad, i.e., math notation.

Radians double

maxAngle Maximum angle

Maximum angle that slices are

available for the 3-D antenna pattern;

usually 6.28 rad, i.e., 2 Pi.

Radians double

minAngle Minimum angle

Minimum angle that slices are available

for the 3-D antenna pattern; usually

0 rad.

Radians double

AntennaPattern

_id

Antenna pattern ID

number

Foreign key for linking this table to the

antenna pattern table.
NA Long

74

Slice_angle

Database Field

Name/Java Variable

Descriptive Field

Name
Description or Purpose Units Type

Slice_primaryKey

Foreign key linking

this entry to the

slice

Captures foreign key for

each row linking this

entry to the slice table;

since Hibernate generates

these keys from an array

persistence model, no

primary keys are

generated; only foreign

keys.

NA Long

angle
Elevation angle

within the slice

Elevation angle starting at

0 rad or horizontal to the

tangent to the earth's

surface, and progressing

upward.

Radians double

angle_index Angle index

Hibernate generates an

index for each elevation

entry row. This

corresponds to the same

index as in the

Slice_gain table. Thus, as

the elevation progresses

through each index, so do

the corresponding values

in the Slice_gain table.

The Slice_primaryKey

and the index link the

values in this table to a

unique slice.

NA long

75

Slice_gain

Database Field

Name/Java Variable

Descriptive Field

Name
Description or Purpose Units Type

Slice_primaryKey
Foreign key linking

this entry to the slice

Captures foreign key for each for

linking this entry to the slice table;

since Hibernate generates these keys

from array persistence models no

primary keys are generated; only

foreign keys.

NA Long

gain Gain

Gain from antenna pattern at the

slice, and elevation angle identified

by the gain_index and

Slice_prmaryKey.

Decibels double

gain_index Gain index

Hibernate generates an index for

each gain row entry. This

corresponds to the same index as in

the Slice_angle table. The

Slice_primaryKey and the gain

index link the values in this table to

a unique slice.

NA long

76

INTENTIONALLY LEFT BLANK.

77

Appendix B. Setting Up the Database Development Environment

78

Getting Started

To develop an application that needs to save Java objects to a database using Hibernate, the

following application development environment is required:

• The open source MySQL Database Management System (DBMS) from Oracle, which is a

Java Database Connectivity (JDBC)–compliant DBMS

• MySQL JDBC Driver library that comes as a plug-in with the Netbeans distribution

• The latest Java Development Kit with the latest Netbeans distribution, as of August 2012;

version 7.2, which includes Java version 1.7

• The Hibernate application programming interface, which is a plug-in provided in Netbeans

distribution, i.e., Hibernate Java persistence application programming interface, which

includes the various jar files and libraries associated with Hibernate

Adding an Appropriate JDBC Driver

For a Java program to connect properly to a database it needs a JDBC driver. All major DBMS

distributions come with a JDBC driver. Network Connectivity Analysis Model (NCAM) uses the

MySQL DBMS, with a JDBC driver MySQL JDBC Driver. In the Netbeans integrated

development environment, this is added to your project by right clicking on the project and

selecting Properties-> add Library and navigating to where the file MySQL JDBC Driver is

found. If it is not there, you need to download from the Netbeans Tools-> Plugins and select the

Available Plugins tab to download.

Setting Up and Administering MySQL

Download the MySQL distribution from the MySQL website* and install it per documentation

onto your database server machine or onto your local machine depending on your work. Also

install the graphic user interface (GUI) administrator tools provided for MySQL. The latest

version is MySQL Workbench or MySQL Query Brower, Administrator, etc.

Once MySQL is installed, you need to create a user account for the application that will connect

to MySQL.

• Start up the MySQL console via the command line window via the GUI or in a Windows

command line window, or a terminal window in Linux with

mysql –uroot –p hit return,

* MySQL Home Page. http://dev.mysql.com/downloads/mysql/ (accessed 2 March 2010).

79

This signs you in as root user to the command console, which is set up during the MySQL

DBMS installation onto the server or local machine.

• Create a database for the NCAM application; in our case we call it the “NCAM” database.

mysql > create database NCAM;

• Add new accounts and grant proper privileges to the user, i.e., , ‘cmuser’ with all privileges

to MySQL

To grant all privileges to cmuser connecting from anywhere, ie, ‘%’

mysql> grant all privileges on *.* to ‘cmuse’r@’%’ identified by ‘cmpasswd’;

 Grant all privileges to cmuser connecting from local host with grant option

mysql > Grant all Privileges on *.* to ‘cmuser’@’localhost’ identified by

‘cmpasswd’ with grant option;

Grant all privileges to cmuser connecting from 128.63.62.16

mysql> grant all privileges on *.* ‘cmuser’@’128.63.62.16 identified by

‘cmpasswd’ with grant option;

The account has a username of cmuser and a password of cmpasswd. It is a super user account

with full privileges to do anything. As a database administrator you would want to limit these

restrictions.

• Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;

80

Other useful MySQL commands via the console are:

• If the administrator creates your database for you when setting up your permissions, you

can begin using it. Otherwise, you need to create the database itself:

mysql> CREATE DATABASE NCAM;

• Creating Usernames and passwords

When you connect to a MySQL server with a command-line client, you should specify the

username and password for the account that you want to use:

C:\> mysql --user=cmuser --password=cmpasswd NCAM

If you prefer short options, the command looks like this: C:\> mysql -u cmuser -pcmpasswd

NCAM

There must be no space between the -p option and the following password value.

• Creating a database does not select it for use; you must do that explicitly. To make NCAM

the current database, use this command:

mysql> USE NCAM;

Database changed

• Creating the database is the easy part, but at this point it's empty, as SHOW TABLES shows

for the database you have previously select to use:

mysql> SHOW TABLES;

Empty set (0.00 sec)

81

• Creating a backup with MySQL Administrator, go into the MySQL and start MySQL

Administrator:

Sign in as ‘cmuser’ with password ‘passwd’.

When the Administrator GUI appears, select Backup icon from the left panel, select the

databases that you wish to backup, give it a project name, and click on Execute Backup

Now button. The backup is stored as an SQL file.

82

• Restoring Backed up database files via the MySQL Administrator GUI

Select the restore icon and navigate to your backup file by pressing the Open Backup File

button.

83

Using MySQL Query Browser

If you do not wish to use the MySQL command console, the GUI MySQL Query Browser

provides a very intuitive interface for completing database management functions, e.g., creating

new databases, creating a new table, dropping database schemas, and manually inserting

database values. The MySQL Query Browser has been replaced by Oracle with the MySQL

Workbench, with similar or better capabilities. This project used MySQL Query Browser on the

Linux platform.

Select the MySQL Query Browser from the Start->Programs Windows menu.

In the Query Browser Schemata Panel, double click the database to view the tables.

Expanding the tick mark next to the database reveals the tables; expanding the tables tick mark

exposes the database values.

84

Double-clicking on a table automatically generates the SQL query to print out all table results

into the preview window. The SQL Query Area window may be used to write your own SQL

queries as you would in a MySQL console window.

85

Bibliography

Bauer, C.; King, G. Java Persistence with Hibernate. In Hibernate in Action, 2nd Ed.; Manning

Publications Co.: Shelter Island, NY, 2007.

Elliot, J.; O’Brien, T.; Fowler, R. Harnessing Hibernate; O’Reilly Media: Sebastopol, CA, 2008.

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. M. Design Patterns: Elements of Reusable

Object-Oriented Software; Addison-Wesley Professional: Boston, MA, 1994.

NO. OF

COPIES ORGANIZATION

86

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 2 DIRECTOR

 (PDF) US ARMY RESEARCH LAB

 RDRL CIO LL

 IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

 1 DIR US ARMY EVALUATION CTR HQ

 (HC) TEAE SV

 P A THOMPSON

 2202 ABERDEEN BLVD 2ND FL

 APG MD 21005-5001

 5 DIR USARL

(2 HC RDRL SL

3 PDF) J BEILFUSS (HC)

 P TANENBAUM (HC)

 RDRL SLB S

 M PERRY

 RDRL SLE

 R FLORES

 RDRL SLE W

 A BEVEC

